Bankruptcy Prediction by Generalized Additive Models
نویسنده
چکیده
We compare several accounting based models for bankruptcy prediction. The models are developed and tested on large data sets containing annual financial statements for Norwegian limited liability firms. Out-of-sample and out-of-time validation shows that generalized additive models significantly outperform popular models like linear discriminant analysis, generalized linear models and neural networks at all levels of risk. Further, important issues like default horizon and performance depreciation are examined. We clearly see a performance depreciation as the default horizon is increased and as time goes by. Finally a multi-year model, developed on all available data from three consecutive years, is compared with a oneyear model, developed on data from the most recent year only. The multi-year model exhibit a desirable robustness to yearly fluctuations that is not present in the one-year model.
منابع مشابه
Bankruptcy Prediction in Norway: A Comparison Study
In this paper we develop statistical models for bankruptcy prediction of Norwegian firms in the limited liability sector using annual balance sheet information. We fit generalized linear-, generalized linear mixedand generalized additive models in a discrete hazard setting. It is demonstrated that careful examination of the functional relationship between the explanatory variables and the proba...
متن کاملPredicting Bankruptcy of Companies using Data Mining Models and Comparing the Results with Z Altman Model
One of the issues helping make investment decisions is appropriate tools and models to evaluate financial situation 0f the organization. By means of these tools, investors can analyze financial situation of the organization and identify financial distress or an ideal condition, they become aware of making decisions to invest in appropriate conditions. The main objective of this study is to ev...
متن کاملUsing the Imperialistic Competitive Algorithm Model in Bankruptcy Prediction and Comparison with Genetic Algorithm Model in Listed Companies of Tehran Stock Exchange
Bankruptcy prediction is a major issue in classification of companies. Since bankruptcy is extremely costly, investors, owners, managers, creditors, and government agencies are interested in evaluating the financial status of companies. This study tried to predict bankruptcy among companies registered in Tehran Stock Exchange (Iran) by designing imperialist competitive algorithm and genetic alg...
متن کاملThe Prediction Model for Bankruptcy Risk by Bayesian Method
The importance of predicting bankruptcy risk of firms is increasing because of later financial crisis. Despite practical researchers trying to present models for predicting this risk, it seems that an optimum and acceptable model that is reliable for financial statement users and auditors in order to increase their ability in decision making and professional judgment has not been presented yet....
متن کاملDesigning a Bankruptcy Prediction Model Based on Account, Market and Macroeconomic Variables (Case Study: Cyprus Stock Exchange)
The development of the Cyprus Stock Exchange together with the increasing trend of investors’ presence in financing activities has led to the importance of this market. In such circumstances, the first step towards a sustainable development of the Exchange is to support the investors. Risk of bankruptcy for the investee is a major challenge that an inexperienced stock investor encounters. In th...
متن کامل